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It is shown that for positive definite Hermitian matrices A such that An has no
more than kn nonzero entries in each row, the following upper bound holds:
II A -III ro ~ 33 Jk II A - III y4 II A II ~/4. The method of proof involves a Chebyshev
expansion of A -I. © 1986 Academic Press. Inc.

1. For a square matrix A, IIAlloo denotes the norm of A considered as an
operator on /00(/)' where I is the index set of the rows of A. The formula
IIAlloo = sup; Lj IAU, i)1 is well known. Similarly, IIAII2 denotes the norm of
A as an operator on 12(1) and II A 112 = sup{ jD:f: AE (J(A *A)}, where A* is
the conjugate transpose of A and a(B) denotes the spectrum of the
operator B. In general, if A is an n x n matrix, we have IIA II 00 ~

v0z IIAI12' or, if each row of A has no more than k nonzero entries, we have
IIAIl00~jkIlAII2 (cf. Lemma 2.3). If A=A*, then IIAI12~IIAIIoo since
a(A) <;; {z: Izl ~ IIA II} for any operator norm. Thus, for self-adjoint- or even
normal-matrices which are banded we see that the /00 and 12 operator
norms are equivalent with the constants of equivalence depending on only
the bandwidth. In [1], we observed that an infinite matrix A which is ban
ded and invertible in some lp operator norm (1 ~ p ~ 00) is necessarily
invertible in all Ip norms. This does not imply that these norms are
uniformly equivalent in the sense that there exist constants m = m(p, q),
M = M(p, q) independent of A -1 such that

m IIA-lllq~ IIA-Illp~M IIA-Ill q.

Nor does the result of [1] or its sharpening in [2] imply that a sequence
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of invertible matrices all of the same bandwidth and uniformly bounded in
some lp operator norm must have inverses whose norms are asymptotically
equivalent in alllp norms. For example, if IIA NI12 = 1 for all N and each AN
is tridiagonal, then we do not know if

Such matrices arise naturally in the numerical solution of boundary value
problems by finite differences and finite element method. An understanding
of how their inverse-or diagonal scalings of them-bound each other
could be useful in establishing and unifying results on convergence in
vanous norms.

In this paper we restrict attention to Hermitian matrices which are
positive definite and banded but make no restriction on the size-finite or
infinite or bi-infinite. The bandedness assumption can also be replaced by
the assumption that each row of An has no more than nk nonzero entries
for some fixed k. We call a matrix A m-banded if AU, j) = 0 for Ii - jl > m12.
So, tridiagonal matrices are 2-banded. Since our matrices are Hermitian
there is no problem in identifying the diagonal in the bi-infinite versions.
Our main result is Proposition 2.4, which asserts that for an m-banded
invertible Hermitian A,

IIA-lll oo ::;; 33~IIA-lll~/41IAII~/4.

We conjecture that the 5/4 could be lowered to 1, perhaps at the expense of
changing the remaining quantities. While the results are of an operator
theoretic nature, the proofs are based on a notion of classical
approximation theory-the Chebyshev series expansion of an analytic
function. In addition, for us this whole subject of band matrices was
motivated by problems in approximation theory.

2. We start with two technical lemmas.

LEMMA 2.1. Let 0 < a < b and define

._ fi-Ja
q .- fi+Ja

and

(2.1 )

for n = 0, 1, 2, .... (2.2)
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Then, for a ~ x ~ b we have the following expansion
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where z=(2/(b-a))(x-(a+b)/2) and the Tn's are the Chebyshev
polynomials, To=l, TI(x)=x, Tn(x)=2xTn_I(X)-Tn_2(X).

Proof I/x=(2/(b-a))'(l/(z+c)), where c=(b+a)/(b-a). The
Chebyshev coefficients

c = 4 fIT cos ne de
n ( b - a )n 0 cos e+ c

can be computed exactly and give the above numbers (cf. [3, p. 366]).

LEMMA 2.2. Let a, b, q be as above, then

oc

L qn j;z ~ 25/2T(3/2)(bla)3/4
.

n~ 1

Proof With a: = -In q it's clear that L~~ I qn j;z is not far from
It' X

l/2 e- CXX dx. In fact

can be proven by breaking the series into two parts: one corresponding to
I ~ x ~ 1/2a, where x 1/2 e - ~x is increasing and one corresponding to
1/2a ~ x ~ 00, where Xl/2 e-~X is decreasing. The change of variables u = ax
gives

2
= (In(llq))312T(3/2).

Now,

.fi-fi l-~ I
q = = ~ ------,=

.fi+fi l+~ l+~'
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so 1/q ~ 1+.j;jb and

1 1 1
--~ =-----==-------
In(l/q) In(I+~ L:=o(-lt(.j;jbt+ I ·(I/(n+l))

1
~ ---r=----;==-

.j;jb(1 - !.j;jb )

Since a~b, 1/(1-!.j;jb)~2. Thus, we have

{
I }3/2__ ~ (2)3/2. (b/a)3/4

In(1/q)

which gives the desired result. I
For completeness we include the following result.

LEMMA 2.3. Let B be r-banded. Then, Bk is rk-banded and IIBlloo ~
J;+lIIBh

Proof The first statement is easy to check. Now, IIBlloo =
sup; sup{ IIBxl1 00: Ilxll oo = 1 and x(j) = 0 for Ii - il > r/2} ~ sup; sup{ IIBxh

Ilxll oo =l, x(j)=O for li-il>r/2} ~ J;+lsup;sup{IIBxI12: IlxI1 2=1,
x(j)=O for li- il >r/2} ~ J;+lIIBI12. I

The main result now follows easily from elementary spectral theory.

PROPOSITION 2.4. Let A be m-banded, Hermitian and positive definite.
Then

IIA -III 00 ~ 33 j; IIA II ~/4 IIA -III ~/4.

Proof Let a:= inf{ <Ax, x): IIxl12 = I} and b:= sup{ <Ax, x):
Ilx11 2= 1}, so IIA- 1112=a- 1 and IIAI12=b. If b=a, then A is diagonal
operator and there is nothing to prove. If b > a, define

B:= _2_ [A _a +bIJ.
b-a 2

The spectrum of B is contained in the interval [ -1, 1]. Using Lemma 2.1
we have the norm convergent Chebyshev expansion

A-I=~OI+ f cnTn(B)
n=l
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where Cn is given by (2.2). Now,
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1 00

IIA -III 00 ~ fib + n~1 len I II TAB)II 00

1 00 2 n

~ - + I -q- (nm + 1)1/2 II Tn (B)112
fib n= I fib (since Tn(B) is nm-banded)

~2fl;{1+2 f qn~} (1IBI12=lforcesIITn(B)112=1)
vab n= I

~2j; {1+4F(3j2)(2)3/2(bja)3/4} (by Lemma 2.2)
fib

~ 33 j; bl
/
4a- 5

/
4 = 33 j; IIAllY4 11A -111~/4. I

Note that the only use of the zero structure of A occurs in the second
inequality; hence, the statement in the abstract.

We believe that the correct exponent on IIA -1112 is 1 but have not been
able to prove it. If we somehow knew that the quantities II Tn(B)11 00 could
be ignored, then the estimate Ln Ienl ~ 2ja would give such an exponent.
Our computations with the bounds on the entries of A -I given in [2] gave
a bound on IIA-liloo of the form IIAIlY21IA-III~/2 even in the tridiagonal
case. If we assume that A is bi-infinite and Toeplitz, then we can translate
Proposition 2.4 into a norm inequality for reciprocals of cosine
polynomials. First, we introduce the norms.

For I(z) = L::'= -00 cnzn we define

11/1100= sup I/(z)1
Izl ~ I

COROLLARY 2.5. Let p(z) = L:~ -m anzn and assume that an = ii_ n,
n ::/= 0, aoE IR, and 0 < ti ~ p(z) ~Pif Izi = 1, with the values ti, Pbeing taken

on. Let r(z) = Ijp(z). Then Ilrll A ~ 33 J2m + 1 Ilrll ~4 II pll ~4.

Proof p is the symbol of a positive definite m-banded Hermitian matrix
A: A(i, j) = ak if Ii - jl = k. II pll 00 = IIA 112, II pll A = IIA II 00' and r is the sym
bol of A -I with like norm equalities. Now apply Proposition 2.4. I

In principle one should be able to work out the details of the Toeplitz
case in general. Several avenues of approach are possible. For example, a
direct sharpening of the inequality II Tn( B) II 00 ~Jnm + 1 II Tn( B) 112 for
Toeplitz B might be possible. Or one can try to bound the norm given by
(2.3) directly. For the present we will give a bound for strictly diagonally
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dominant M-matrices. The proof is similar to that for totally posItIve
Toeplitz matrices and as in that case does not assume bandedness, cf. [4].

PROPOSITION 2.6. Let A be a bi-infinite Hermitian Toeplitz matrix such
that A(O,O»Li#oIA(i,O)1 and A(i,O)~O for all i. Then, IIA- 1 112=
IIA -III 00'

Proof Let p(z) = Li#O A(i, O)Zi be the symbol of A, with r(z) = Li bizi

the symbol of A-I. The Neumann series representation of A - I shows b i ~°
for all i. Hence,
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